Introduction of Pathogen Inactivation in a Regional Blood Center in Switzerland

Niels Lion
niels.lion@mavietonsang.ch
Annual production – Lausanne

- 30’000 RBC concentrates (400’000 in Switzerland; ZH > BE > VD)
- 3’000 platelet concentrates (apheresis, 37% double doses)
- 6’000 fresh frozen plasmas
- 8’000 liters of plasma for fractionation
Agenda

Decision Process for Implementing Pathogen Inactivation

Operational Changes in Component Laboratories
Meeting INTERCEPT processing input requirements
Optimization of buffy coat pooling process
Impetus for BC pooling

• Increase overall production of platelet concentrates: external supply between 4 and 100 PCs per year (+2’000% in 3 years) despite an increase in production (20% in 3 years)

• Increase PCs availability during long weekends

• Possibility to produce PCs “on demand”

• Transition to platelet additive solution (PAS) - beneficial for transfusion reactions
Before Intercept approval

- Apheresis platelets only for:
 - Pregnant women
 - Pediatric
 - Oncology
 - Patients immunized against HLA or HPA

- Apheresis or Buffy Coat derived platelets for all others

Demand for each type of product is highly fluctuating, adding one level of complexity to blood bank
After Intercept approval

• PI-treated, BC-derived and apheresis platelets are equivalent products in terms of safety and efficiency.

• They can be used for any kind of patients (including pediatry, oncology...).

• We would like to introduce a policy: “fresher platelets for more critical patients”.

The production ratio apheresis / BC-derived depends only on operational and financial considerations.
Previous situation (2009) - no BC-derived platelets

Platelets produced by apheresis only:
2200-2300 apheresis procedures
Platelets collected and stored in 100% plasma

30’000 whole blood donations
Filtration of whole blood
Separation of RBCs, dry BC, and plasma

Process optimized for RBC and plasma production
Close future

60% of platelets produced by apheresis (1’500-1’600 procedures) in PAS
40 % of platelets derived from BC (in PAS, 32-47% plasma)

30’000 whole blood donations
Separation of RBCs, “plasma-rich” BC, and plasma for fractionation
filtration of CE

Process optimized for BC production
Decisions for BC pooling

- Isogroup pooling of A or O BCs
- Pooling of Rhesus negative BC, if possible
- No a priori selection of BCs (gender, PLT content...); only AINS are taken into account.
- No further testing of CMV or isohemolysins
- As much as possible, we want to be able to match the production objectives (20 BC-derived PCs per week) with on-site collections only

⇒ pooling of 4 BCs
Transition to using INTERCEPT

• Conversion of the process for the production of BCs for pooling

• Target: plasma content between 32 and 47% in the pooled platelet concentrate

• Modification of the Optipress backplate to increase plasma content

• Pooling of 4 BC + 280 mL of Intersol

• Optimization of soft centrifugation conditions

• Optimization of platelet extraction
Process optimization and validation

- input requirements of INTERCEPT (apheresis and BC platelets)

<table>
<thead>
<tr>
<th></th>
<th>Small Volume</th>
<th>Large Volume</th>
<th>Dual Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspension Medium*</td>
<td>PAS</td>
<td>PAS</td>
<td>PAS</td>
</tr>
<tr>
<td>Pit Count</td>
<td>2.5-6.0x10^{11}</td>
<td>2.5-7.0x10^{11}</td>
<td>2.5-7.0x10^{11}</td>
</tr>
<tr>
<td>Volume</td>
<td>255-325 mL</td>
<td>300-420 mL</td>
<td>300-420 mL</td>
</tr>
<tr>
<td>Plasma</td>
<td>32 – 47%</td>
<td>32 – 47%</td>
<td>32 – 47%</td>
</tr>
<tr>
<td>RBC</td>
<td><4x10^6/mL</td>
<td><4x10^6/mL</td>
<td><4x10^6/mL</td>
</tr>
<tr>
<td>CAD time</td>
<td>4-16 hrs</td>
<td>6-16 hrs</td>
<td>6-16 hrs</td>
</tr>
<tr>
<td>Integrated Storage</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Containers</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Approved Storage</td>
<td>7 days</td>
<td>7 days</td>
<td>5 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 days</td>
</tr>
</tbody>
</table>

- Treated components must meet local quality guidelines
 - > 2.4 x 10^{11} platelets per unit
 - pH above 6.4
 - shelf-life of 5 days, 7-day shelf life permitted
BC adjustments

• Adjust plasma content per BC to PI requirement for 4 and 5 BCs

• Verification of RBC concentrates

• Verification of plasma units
Two main transitions in the whole blood process

- Filtration of whole blood
- Separation of RBCs, dry BC, and plasma

Separation of RBCs, dry BC, and plasma
Filtration of CE

<table>
<thead>
<tr>
<th>RBC</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol = 268.8±15.7 mL Hb = 52.1 ± 5.4 g/bag</td>
<td></td>
</tr>
<tr>
<td>Vol = 259.7±12.3 mL Hb = 52.0 ± 4.2 g/bag</td>
<td></td>
</tr>
<tr>
<td>Vol = 257.9±16.5 mL Hb = 49.9 ± 4.9 g/bag</td>
<td></td>
</tr>
<tr>
<td>Vol = 269.0 ± 19.9 mL</td>
<td></td>
</tr>
<tr>
<td>Vol = 279.0 ± 12.2 mL</td>
<td></td>
</tr>
<tr>
<td>Vol = 249.8 ± 16.9 mL</td>
<td></td>
</tr>
</tbody>
</table>
Process optimization: train rinsing with PAS

Correct rinsing

Incorrect rinsing
Characteristic of the interface Platelets/Red Cell

The interface is very rich in platelets
Importance of soft centrifugation optimization

Clear cut between PRP and Red Cell layers
Most diffuse possible Platelet layer above Red Cell
Platelet expression into a transfer bag

Push the platelets as far as possible into the transfer bag
BC and PLT characteristics prior to PI (4 BC)

• BC Volume = 68.0 ± 2.5 mL (41.0 ± 2.8 mL of plasma)

• BC Htc = 0.39 ± 0.04

• PLT vol = 340.5 ± 8.3 mL

• PLT num = 3.02 ± 0.53 10^{11} PLT / bag
BC and PLT characteristics prior to PI (5 BC)

- BC Volume = 63.2 ± 1.7 mL (39.0 ± 1.5 mL of plasma, 41.0±1.0% plasma)
- BC Htc = 0.38 ± 0.02
- PLT vol = 338.5 ± 29.0 mL
- PLT num = 4.0 ± 0.4 10^{11} PLT / bag
Actual inactivation data – design qualification

• For pools of 4 Buffy coats

• Average PLT is $2.83 \pm 0.55 \times 10^{11}$ PLT per process (0.71×10^{11} PLT per BC equivalent)

• PLT loss during production is $0.20 \pm 0.08 \times 10^{11}$ PLT per process
For 4 BCs, need to exclude outliers

BC-derived, non filtered PC $> 2.85 \times 10^{11}$

100% of PCs $> 2.5 \times 10^{11}$ PLT per bag prior PI

100% of PCs $> 2.4 \times 10^{11}$ PLT per bag after PI
Take-home messages

- Design qualification is required to produce BC-derived PC in the target yield range

- We need to consider PLT variability for individual BC

- Transition to PAS results in a loss of 20-25 mL plasma per whole blood separation

- Importance of technical partnership with supplier to successfully conduct process adjustments
What about apheresis?

• Need to update our Trima to software version 5.2 for automated PAS addition.

• Expected minor increase in PLT dose (less than 10% to match Intercept specifications).

• Anticipated no change in collection duration.

• Additional plasma collection resulting from conversion to PAS.
Financial analysis

Takes into account:
- plastic and consumable costs
- loss of whole-blood plasma
- gain of plasma from apheresis

Margin to cover investments (illuminators, SCD...) and personnel costs.
Our near-term planning

- May-June 2010: process adjustment.
- June 2010: training staff.
- July-August 2010: consolidation of data and preparation of the validation document (SwissMedic).
- October 2010: production in routine.

We believe that by introducing INTERCEPT in our center, we have a safeguard against not only bacteria but also emerging pathogens.
Thank You